Comparative Analysis of the Interferogram Sensitivity to Wavefront Aberrations Recorded with Plane and Cylindrical Reference Beams

Abstract. The paper investigates the sensitivity of interferograms formed using the **structured reference beams**. A study carried out on the use of reference beams with cylindrical wavefronts in the interferograms formation to improve the aberrations recognition using a **convolutional neural network**. The applying of a cylindrical reference beam instead of a plane one for recognition of wave aberrations makes it possible to **reduce the mean absolute error** by more than **30%**.

The reference beam:

$$E_{R}(x, y) = \exp \left[iB(x, y) \right]$$

The wavefront aberrations:

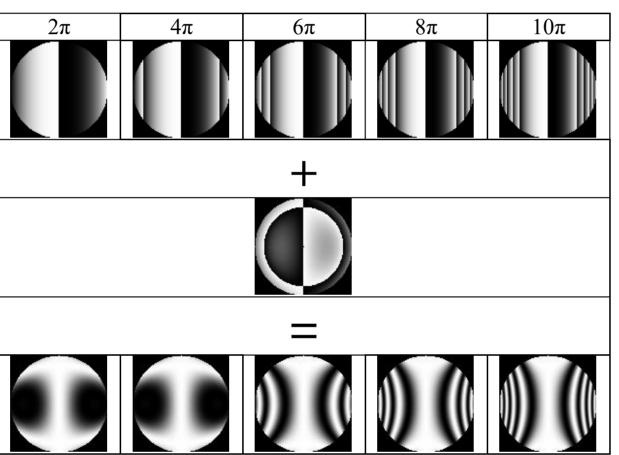
$$E_{W}(x, y) = \exp\left[iW(x, y)\right]$$

The interferogram:

$$I(x, y) = \left| E_W(x, y) + E_B(x, y) \right|^2 \left| \sum_{w \in W} \left(x, y \right) \right|^2$$

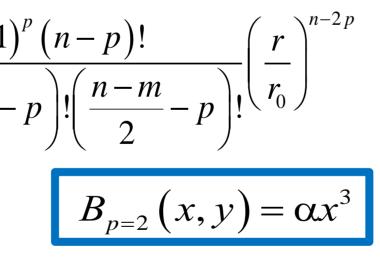
The interferograms obtained using a plane and structured reference beam corresponding to a cylindrical (cubic) carrier make it possible to form a more complex intensity distribution picture.

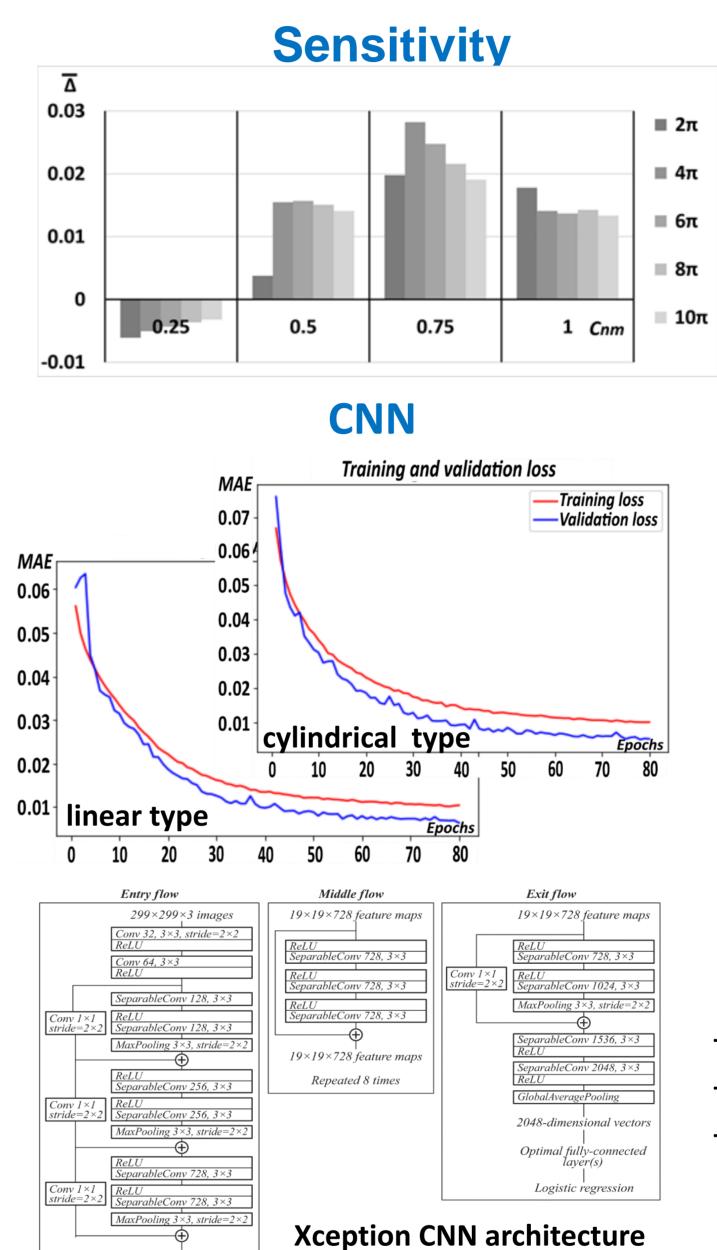
$$W(r,\phi) = 2\pi \sum_{n=0}^{n_{\max}} \sum_{m=0}^{n} c_{nm} Z_{nm}(r,\phi). \qquad R_n^m(r) = \sum_{p=0}^{(n-m)/2} \frac{(-1)^{2}}{p! \left(\frac{n+m}{2}\right)^{2}}$$


$$Z_{nm}(r,\phi) = Z_N(r,\phi) = A_n R_n^m(r) \begin{cases} \cos(m\phi) \\ \sin(m\phi) \end{cases} \qquad A_n = \sqrt{(n+1)/\pi}$$
Sensitivity

$$S_{p} = \sqrt{\iint \left[I_{p}(x, y) - I_{0p}(x, y) \right]^{2} dx dy / \iint I_{0p}^{2}(x, y) dx dy} \qquad \Delta = (S_{2} - S_{1}) / C_{nm}$$

The parameter S will allow us to estimate the recognition sensitivity of a linear and cylindrical interferograms, which corresponds to the standard deviation (SD) value of the p-type interferogram formed by an **aberrated** wave $I_{\rho}(x,y)$ from the **unaberrated** interferogram $I_{\rho 0}(x,y)$.


Acknowledgments. This work was supported by the grant of the President of the Russian Federation (No. MD-6101.2021.1.2).


Samara, Russia, IX International Conference on Information Technology and Nanotechnology (ITNT-2023)

P. A. Khorin^{1,2}, A. P. Dzyuba³, and N. V. Petrov³

¹Samara National Research University, Samara, Russia ²IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia ³ITMO University, Saint-Petersburg, Russia

19×19×728 feature ma

Conclusion. The use of reference beams with the **cylindrical** wavefronts is proposed to improve the aberration recognition from using convolutional neural interferograms The networks. interferogram sensitivity when using a cylindrical reference beam increases by at least 10% compared to a plane reference beam for the radially asymmetric types of aberrations, and the **mean absolute** error of aberration recognition decreases from 0.0068 to 0.0047.

Recoo	nition	results
neeg		ICOURC

The mean absolute recognition the model for error interferograms of various types with a variable reference beam parameter α

Type interferograms	Angle	MAE
Linear	$\alpha=2\pi$	0.0063
	$\alpha = 4\pi$	0.0065
	$\alpha = 6\pi$	0.0068
	$\alpha=2\pi$	0.0050
Cylindrical	$\alpha = 4\pi$	0.0047
	$\alpha = 6\pi$	0.0050

- Nvidia GeForce RTX 2070
- 8 GB of GDDR6-type memory
- Keras package for Python language