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1. Introduction
In many areas of human activity, in particular, in the context of time series analysis, relevant is also the 
problem of predicting (regressing) certain values. This paper is devoted to the problem of regression of 
pipe thicknesses tied to two wells of the same gas field. The piping of the wells considered in this paper are 
equipped with sensors that take readings of the physical characteristics of the passing condensate. Data 
from these sensors is used as input features for regression models. Thickness measurements are made in 
different places at different times on the well piping using ultrasonic diagnostics. We propose a method for 
interpolating thicknesses in the time domain that takes into account the physical characteristics of the of 
the passing condensate.

2. Dataset Description and Preparation
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In this work, we used data from two wells (with the names "2-2" and "3-1") of the same gas field. For each of 
them, there were values of 17 time-varying parameters taken in 1-hour increments from sensors located 
on the well piping: pressure and temperature values taken at different piping locations (13 parameters), 
data on condensate flow, CO  content, and pH. In the process of machine learning, these parameters act 2

as input features. The process of smoothing the outliers and filling in the gaps in these data was carried out 
using a sliding window. Also, for each well there were values of the target parameter – the results of 
measuring the wall thickness of the piping components at different piping locations at different times. 
Thickness values, in contrast to sensor readings, are widely spaced in time. In this paper, two methods of 
interpolation of this parameter were considered: a method using quadratic splines and our proposed 
method of interpolation coordinated with the physical model, i.e. produced in accordance with 
physical parameters of the transported gas condensate. For both methods of interpolation, two data sets 
were prepared for further experiments respectively.

The character of the intensity of the corrosion process is related to the rate of change of the wall 
thickness, so the models were trained to regress the values of this rate. Since the rate of change of the 
parameter is known to be the derivative of the parameter function, using linear interpolation would cause 
the rate of change of thickness between two known original timestamps to degenerate into a constant, so 
quadratic interpolation is used.

Since the data under consideration is a time series, for each target value, a feature time window of size 
3600 (3600 hours = 150 days = 5 months) was considered. As a regression model, this paper uses a linear 
regression model with the additional use of the RANSAC algorithm with the following hyperparameters: 
the minimum proportion of selected random elements is 0.1, the error function is quadratic. The Huber loss 
function regressor and Theil-Sen regressor models were also considered, but it was found that their 
training takes too much time relative to the training time of the regressor using RANSAC with comparable 
results in terms of accuracy. For each point on the pipe, its own regression model was trained.

2.A. Quadratic Spline Interpolation

2.B. Interpolation coordinated with physical parameters

This interpolation method, which we propose, is based on the use of calculations according to the 
NORSOK M-506 standard.
This standard calculates the theoretical corrosion rate of a pipe (in mm/year) at a fixed point in time, based 
on the pressure, temperature, and pH of the flow, its CO  content, as well as the pipe diameter, wall 2

roughness, and wall shear stress (the latter three parameters are known from technical documentation). 
With hourly pressure, temperature, CO , and pH data, we obtained hourly values for the theoretical wall 2

thinning rate for each piping component. These values were converted to mm/h and averaged over the 
day, and then used as weights for the intensity of thinning between the two original measurements: the 
thinning value was brought into line with the available measurements, taking into account these weights 
as multiplication factors. Having obtained thickness values with a frequency of once a day in this way, at 
the final stage – in order to match the sampling rate of 17 features (1 hour) – we used quadratic spline 
interpolation, again guided by the ideas that were listed in the previous paragraph.
The graph shown in Figure 1 shows that between the measurement points, which are indicated by large 
diamonds, nonlinearity was added, which allows taking into account intermediate well operation modes to 
achieve greater detail.

Next, a binary relation of similarity was introduced, which included pairs of models with a measure of 
similarity between themselves greater than 0.9 (i.e. such models were considered similar), and then, 
according to this binary relation, the models were divided into groups (groups of similar models).
The first metric of correspondence of the trained models to physical reality (M ) was defined as the 1

average size of the groups of models.
As a result of the experiment, it was found that the use of the interpolation method coordinated with the 
physical parameters leads to higher similarity values, which, in turn, contributes to a more intensive 
grouping of models. Table I shows the resulting values of the M  metric for two wells considered in the 1

paper ("2-2" and "3-1") for two methods of interpolation of the target parameter.

3. Experiments Setup

4. Experiments Results

4.B. Relative Importance of Features

4.A. Models Similarity

Despite the fact that for each point on the well piping, its own regression model was trained, the fact that all 
these points belong to one single piping, through which the same gas condensate mixture passes, allows 
us to expect similarities in the behavior of models for different points on the piping. Therefore, the measure 
of the similarity of the models was further considered (regarding how they behave during regression). Due 
to the aforementioned facts, the more similar the behavior of the models will be, the greater the measure of 
correspondence of the trained models to physical reality will be.
The measure of similarity between the two models was calculated as follows. On the time interval between 
two neighboring ground-truth thickness measurements (from the training sample), the validation values of 
the rate of wall thinning were regressed on 17 features using both models. Between the two resulting 
vectors of values, the R2 metric was calculated, and in the case of obtaining a negative value, it was set to 
0. The resulting number (from 0 to 1) was understood as a measure of the similarity of the models.
Figure 2 shows models similarity measure values for all models of the well “3-1” calculated using both 
quadratic spline interpolation and the interpolation coordinated with physical parameters.

The relative importance of the features used in the models for the regression of the wall thinning at points 
in various sections of the piping (near the wellhead, before the choke, after the choke) was assessed. The 
initial features were formed into 6 sets (F1-F6) depending on the location of the corresponding sensors on 
the well piping. Then, a set of 6 regression models was trained for each measurement point on the piping, 
and each model was trained on the corresponding set of features F1-F6.
Then the models were divided into three classes: near the wellhead, before the choke, and after the choke 
– depending on the location of the corresponding measurement point on the piping. Then, for each class, 
for each set of features, the average value of the L  metric for the corresponding models was calculated 1

between the values regressed by the models and the initial values of the target parameter on the test 
sample. The obtained values were normalized and inverted so that the smallest value of L  corresponded 1

to 1, and the largest values of L  corresponded to numbers less than 1. The obtained numbers were 1

understood as the significance of the features.
The results of measuring the feature importance for models trained using two different methods of 
interpolation of the target value are presented in Figures 3 and 4.

Well 2-2 3-1

Quadratic spline interpolation 6.87 4.32

Interpolation coordinated with physical parameters 10.23 10.57

Ratio 1.49 2.45

The second metric of correspondence of the trained models to physical reality (M ) was defined on the 2

basis of the obtained feature importance values as follows:
-1M  = (L (i, i')) ,2 1

where L (*,*) is the L  metric,1 1
18I ∈ ℝ   is the feature importance vector for different classes (6 feature sets × 3 model classes),
18i' ∈ ℝ  is the vector, consisting of the same value, which is the median of the vector i.

Table II shows the resulting values of the M  metric for two wells considered in the paper (“2-2” and “3-1”) 2

for two methods of interpolation of the target parameter.

The result obtained allows us to conclude that the use of the proposed method of interpolation of the target 
parameter instead of more simple quadratic spline interpolation leads to an increase in the values of the 
metrics of correspondence of the trained models to physical reality: the value of the measure M  increased 1

by 1.49 and 2.45 times for wells 2-2 and 3-1, respectively, and for M , the corresponding increases were 2

2.48 and 3.46 times. It should be noted that the consistency of the results for both proposed measures 
indicates a high level of their reliability.

Fig. 3. Feature importance plot for models of the 
well “2-2” trained using quadratic spline 

interpolation

Fig. 4. Feature importance plot for models of 
the well “2-2” trained using interpolation 
coordinated with physical parameters

Fig. 2. Models similarity measure values for all models of the well “3-1” calculated using quadratic spline interpolation 
(on the left) and the interpolation coordinated with physical parameters (on the right)

Fig. 1. Example of thickness values after using interpolation coordinated with the physical parameters of the 
condensate

Table I. M  values1

Well 2-2 3-1

Quadratic spline interpolation 0.31 0.24

Interpolation coordinated with physical parameters 0.77 0.83

Ratio 2.48 3.46

Table II. M  values2
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