Applying the XGBoost Model to Processing Patient Data

Introduction

The aim of the study is to study and apply ML methods to predict the risk of diabetes among patients

Tasks:

-Perform primary data processing

-Identify significant signs affecting whether a patient has diabetes using correlation analysis

-Provide SMOTE data balancing

-Learn and apply the XGBoost model

-Get and analyze results

The objective function of the XGBoost model

The objective function of the model:

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t),$$

_ _ _ _ _ _

where l is the loss function,

 y_i, \hat{y}_i^t — s the value of the i-th element of the training sample and the sum of the predictions of the first t trees,

 x_i – is a set of features of the i–th element of the training sample,

 f_t - is a function (in our case, a tree) that we want to train at step t,

 $f_t(x_i)$ – is a prediction on the i-th element of the training sample,

 $\Omega(f)$ is the regularization of the function f.

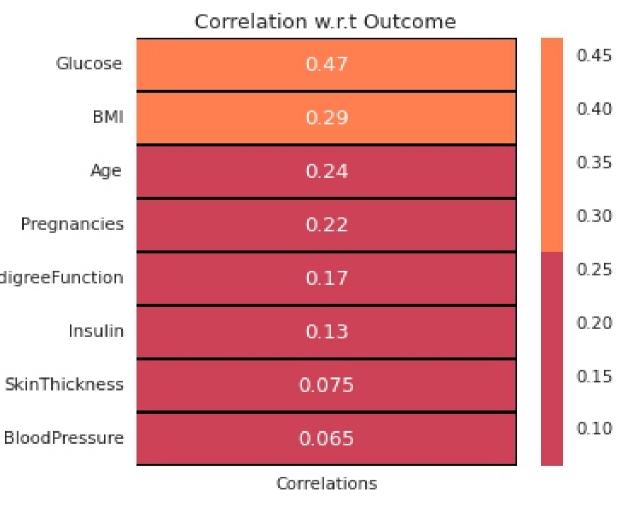
In the next step, using the Taylor expansion to the second term, we can approximate the optimized function $\mathcal{L}^{(t)}$ with the following expression:

$$\begin{aligned} \mathcal{L}^{(t)} = \sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}^{(t-1)} + g_{i}f_{t}(x_{i}) + 0.5h_{i}f_{t}^{2}(x_{i})\right) + \Omega(f_{t}) \\ \text{In turn:} \end{aligned}$$

$$g_i = \frac{\partial l(y_i, \widehat{y}_i^{(t-1)})}{\partial \widehat{y}_i^{(t-1)}}, h_i = \frac{\partial^2 l(y_i, \widehat{y}_i^{(t-1)})}{\partial^2 \widehat{y}_i^{(t-1)}}$$

Paramet x_1 x_2 x_3 χ_4 χ_5 χ_6 \mathfrak{X}_7 χ_8 ${\mathcal{Y}}$

DiabetesPedigreeFunction

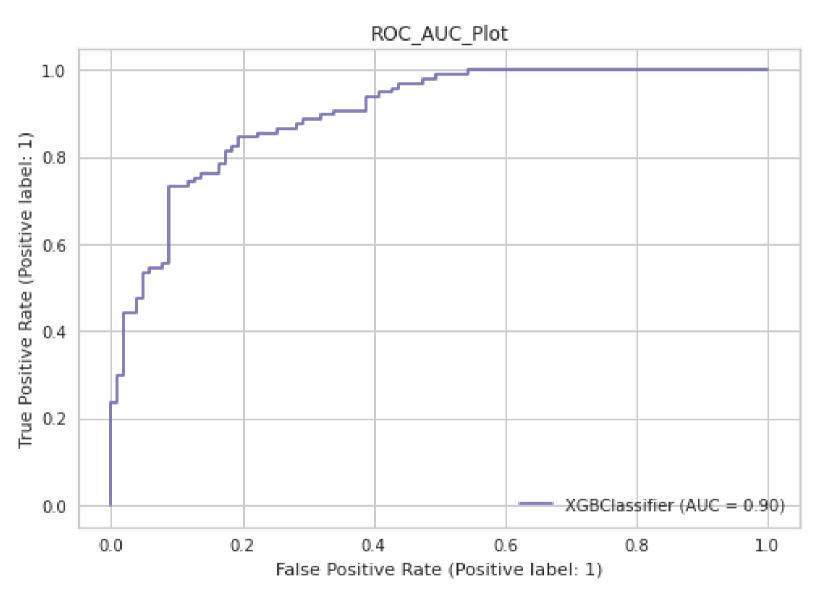

M.A. Zaynullina¹, V.V. Mokshin¹

Initial data

ter	Parameter description	Parameter type
	Number of pregnancies	int64
	Plasma gluco concentration 2 hours in ar oral glucose tolerance test	int64
	Diastolic blood pressu (mm Hg)	int64
	Triceps skin fold thickne (mm)	int64
	2-Hour serum insulin (n U/ml)	int64
	Body mass index k(g/m ²)	float64
	Age	int64
	Diabetes pedigree function	float64
	Having diadetes	int64

Fig. 1. Parameters description

r-Pearson correlation coefficients



Since we want to minimize the model error on the training sample, we need to find the minimum $\mathcal{L}^{(t)}$ for each t. The minimum of this expression with respect to $f_t(x_i)$ is at the point:

Results of training

Since the binary classification problem is being solved (does the patient have diabetes), a reasonable AUC value should be greater than 0.5, and a good classification model has an AUC index greater than 0.9 (the value varies depending on the scope of application)

Conclusion

The paper reviewed the XGBoost machine learning model for the purpose of subsequent prediction. The analysis of ways to separate significant features using correlation analysis, rebalancing of SMOTE classes is carried out. The quality of this solution for this particular task is estimated at 0.9 AUC, which is an excellent result.

KAZAN NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER A. N. TUPOLEV - KAI 10 K.Marx St., Kazan, Tatarstan 420111, Russia (www.kai.ru)

Minimization the model error

 $f_t(x_i) = \frac{-g_i}{h_i}$

Each individual tree of the ensemble $f_t(x_i)$ is trained by a

Fig. 3. The ROC curve for the weighted set of the Xboost method

