Hall effect near a sharp focus of cylindrical vector beams with negative order

V.V. Kotlyar, ${ }^{1,2}$ S.S. Stafeev, ${ }^{1,2^{*}}$ A.A. Kovalev, ${ }^{1,2}$ V.D. Zaicev ${ }^{1,2}$
*sergey.stafeev@gmail.com

Introduction

- In optics, cylindrical vector beams (CVB) are well known [1], including the high-order beams.
- To confirm the theoretic findings, we performed a numerical simulation using Richards-WoIf formula
- We have investigated the behavior of the intensity, components of the Poynting vector $\mathbf{P}=\operatorname{Re}\left[\mathbf{E} \times \mathbf{H}^{*}\right]$ and spin angular momentum (SAM) $\mathbf{S}=$ $\operatorname{Im}\left[E^{*} \times \mathbf{E}\right]$ when focusing a highorder cylindrical vector beams by aplanatic lens with a numerical aperture $N A=0.95$.
- In the sharp focus of the nthorder CVB, the intensity distribution has $2(n-1)$ peaks.
- Areas with reverse energy flows could occur in the focal plane
- There are 4(n-1) areas with different rotation direction of the polarization vector
- In the areas where before the focus ($z<0$) the SAM was negative ($\mathrm{S} 3<0$), after the focus $(z>0)$ it becomes positive ($S 3>$ $0)$, and vice versa.

Conclusions

- The tight focusing of high-order cylindrical vector beams was investigated numerically and theoretically
- It was shown that near the focal plane of the CVB, for instance, at a distance of wavelength before and beyond the focus, 4(n-1) local subwavelength areas are generated, where the polarization vector is rotating in each point.
- For the order of the beam equals to unity (radial polarization) there is no polarization conversion

Richards-Wolf formulae

$\mathbf{U}(\rho, \psi, z)=-\frac{i f}{\lambda} \int_{0}^{\theta_{0}} \int_{0}^{2 \pi} B(\theta, \varphi) T(\theta) \mathbf{P}(\theta, \varphi) \exp \{i k[\rho \sin \theta \cos (\varphi-\psi)+z \cos \theta]\} \sin \theta \mathrm{d} \theta \mathrm{d} \varphi$,
$\mathbf{P}(\theta, \varphi)=\left[\begin{array}{c}1+\cos ^{2} \varphi(\cos \theta-1) \\ \sin \varphi \cos \varphi(\cos \theta-1) \\ -\sin \theta \cos \varphi\end{array}\right] a(\theta, \varphi)+\left[\begin{array}{l}\sin \varphi \cos \varphi(\cos \theta-1) \\ 1+\sin ^{2} \varphi(\cos \theta-1) \\ -\sin \theta \sin \varphi\end{array}\right] b(\theta, \varphi), \quad E_{n}(\varphi)=\binom{a(\theta, \varphi)}{b(\theta, \varphi)}=\binom{\cos n \varphi}{\sin n \varphi}$,
$E_{x}(r, \varphi)=i^{n-1}\left[\cos (n \varphi) I_{0, n}+\cos ((n-2) \varphi) I_{2, n-2}\right], \quad \quad H_{x}(r, \varphi)=-i^{n-1}\left[\sin (n \varphi) I_{0, n}+\sin ((n-2) \varphi) I_{2, n-2}\right]$,
$E_{y}(r, \varphi)=i^{n-1}\left[\sin (n \varphi) I_{0, n}-\sin ((n-2) \varphi) I_{2, n-2}\right], \quad H_{y}(r, \varphi)=-i^{n-1}\left[-\cos (n \varphi) I_{0, n}+\cos ((n-2) \varphi) I_{2, n-2}\right]$,
$E_{z}(r, \varphi)=2 i^{n} \cos ((n-1) \varphi) I_{1, n-1}$,
$H_{z}(r, \varphi)=-2 i^{n} \sin ((n-1) \varphi) I_{1, n-1}$.
$I_{v, \mu}=\left(\frac{4 \pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin ^{v+1}\left(\frac{\theta}{2}\right) \cos ^{3-v}\left(\frac{\theta}{2}\right) T(\theta) A(\theta) e^{i k z \cos \theta} J_{\mu}(x) d \theta$,
$S A M_{z}=s_{3}=2 \operatorname{Im}\left(E_{x}^{*} E_{y}\right)$

$$
\left.S A M_{z}\right|_{z=0}=\left.0 \quad S A M_{z}\right|_{e^{l i z \cos \theta} \approx 1+i k z \cos \theta}=2 k z \sin [(2 m-2) \varphi]\left[I r_{0, m} I i_{2, m-2}-I r_{2, m-2} I i_{0, m}\right]
$$

$I r_{v, \mu}=\left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin ^{v+1}\left(\frac{\theta}{2}\right) \cos ^{3-v}\left(\frac{\theta}{2}\right) T(\theta) A(\theta) J_{\mu}(x) d \theta, \quad I i_{v, \mu}=\left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin ^{v+1}\left(\frac{\theta}{2}\right) \cos ^{3-v}\left(\frac{\theta}{2}\right) T(\theta) A(\theta) \cos \theta J_{\mu}(x) d \theta$.

Orbital and spin energy flows in tight focus of optical vortex

Distribution of intensity of a sharply focused cylindrical beam of the order $n=-2$ after the focus at the distance $z=\lambda$.

Distribution of longitudinal component of the SAM vector of a sharply focused cylindrical beam of the order $n=-2$ after the focus at the distance $z=\lambda$.

[^0]
[^0]: ${ }^{1}$ IMAGE PROCESSING SYSTEMS INSTITUTE
 151, Molodogvardeyskaya st., Samara, Russia www.ipsi.smr.ru HCOUSPAR

 ## ${ }^{2}$ SAMARA NATIONAL RESEARCH UNIVERSITY 34, Moskovskoye shosse,

 Samara, Russia, www.ssau.ru

 Acknowledgements The work was funded by the Russian Science Foundation (grant 22-12-00137)

 ## References

 [1] Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 2009, 1, 1-57. [2] B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 253(1274), pp. 358-379, 1959.
 [3] A. Y. Bekshaev, "Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows," J. Opt. 15, 044004 (2013).
 [4] V. V. Kotlyar, S. S. Stafeev, and A. G. Nalimov "Energy backflow in the focus of a light beam with phase/polarization singularity" Phys Rev A, vol. 99, pp. 33840 (2019)

