

Optical bio and chemical sensor in a one-dimensional photonic structure with bound states in the continuum

Ravshanjon Nazarov*, Zarina Sadrieva

ITMO University, Saint-Petersburg, Russia, rnazarov@itmo.ru*

ITMO UNIVERSITY

Introduction **Results** • Bound states in a continuum (BIC) can be considered E_{z} φ ! as a resonant mode with an infinite quality factor Q in Ez an open system. 0.2 • When the symmetry of the structure is broken or the -0.2 **n**a -0.4

- diffraction channel is opened, BICs transform into quasi-BICs.
- The refractive index (RI) contrast between substrate and superstrate breaks the flip symmetry and transforms the off- Γ BIC into a resonant state with a finite, but high, Q factor [1], which makes it possible to design sensors with high sensitivity [2]. Most of the works are devoted to structures that support only in-BIC, which appear at normal incidence of beam. In our research, we investigate the resonance shift of off- Γ BIC depending on the RI contrast between substrate and superstrate in a dielectric grating and calculate the sensitivity and FOM of the sensor.

-0.6 -0.8 ng W I d ns

Fig.1. Illustration of the sensor with $d=0.5\mu m$, $w=0.35\mu m$, $h=0.425\mu m$ and n_g =3.17, which is located on a substrate with n_s =1.75 and normalized E_z of the BIC

Methods

- Optical response of the sensor was calculated by Fourier Modal Method [3].
- The field profile was obtained on the COMSOL Multiphysics Software^[4].
- Sensitivity was calculated by the resonance shift ullet $\Delta\lambda$ and change on refractive index of analyte Δn_a as
 - S Δn_{a}
- Figure of merit (FOM) was found by following expression:

Fig.2. Dependence of reflectance on incident angle and the wavelength and its spectrum in the vicinity of the BIC

Fig.3. Sensitivity and FOM of the sensor in the vicinity of the BIC

Conclusion

In this research, we considered a one-dimensional photonic structure that supports BIC out the Γ point. We found that:

- 1. The sensitivity for off-Γ BIC is 150 nm/RIU, while the FOM value reaches 3500 (Fig.3), which is higher than 135 nm/RIU (for in-BIC, 1.75 [2]) and 10³ [1]. Moreover, based on the review of the literature, we did not find a study that involved on the applicability off- Γ BIC in sensors.
- 2. The maximum sensitivity, which can be found as $S = \frac{\lambda_{BIC}}{n_a}$ and for $n_a = 1.75$ is equal to 650 nm/RIU. One way to achieve maximum sensitivity is to increase the refractive index of the analyte relative to the refractive index of the substrate [2]. Moreover, the narrow Fano resonances that occur in the vicinity of BIC make it possible to detect a small change in the refractive index in biological or chemical environment.

Acknowledgments

This work was supported by the Russian Science Foundation GrantNo.21-72-30018 and by Priority 2030 Federal

