METHOD FOR AUTOMATIC CARTOON COLORIZATION

V.F. Konovalov

Fig. 1. «Color bleeding"
$L_{\text {inter }}=\sum_{(l, m) \in N_{\mathrm{r}} t} M\left[\left|f_{l}\left(X^{t} ; \theta_{f}\right)-f_{m}\left(X^{t} ; \theta_{f}\right)\right|\right]$
Where M is the operation of taking the mean, I and m are pixels belonging to the corresponding segments on the KNN graph N, X is the source image.

$$
L_{i n t r a}=\sum_{l=1}^{n} M\left[\left|f_{l}\left(X^{t} ; \theta_{f}\right)-C_{l}^{t}\right|\right]
$$

Where M is the operation of taking the mean, I are all the pixels belonging to the segment, C is the ground truth frame

Quantitative results
table i. Quantitative resurts for tomeJerry colorization

Loss function combination, networks	Metrics			
	PSNR	LPIPS	MSELab	cc
Grayscale	20.54358	0.2544	0.0039	0.3095
Bilateral + RankDiv + Temporal,	20.915756	0.2079	$\underline{0.0035}$	0.3114
$\underset{\substack{\text { Bilateral }+ \\ \text { Rampoliv }+ \\ \text { Temporal, main }+ \\ \text { refinement } \\ \text { network }}}{ }$	20.02433	0.2342	0.0036	0.3101
$\underset{\substack{\text { RagkNDiv + } \\ \text { Segment, main } \\ \text { network }}}{ }$	20.893824	0.2160	0.0038	0.2997
RankDiv + Bilateral + Segment, main network	21.040308	0.2078	0.0036	$\stackrel{0.3148}{ }$
RankDiv + Bilateral, main network	20.819466	0.2114	${ }^{0.0038}$	0.3091

For more results, and information about baseline losses and algorithms, see paper.

