METHOD FOR AUTOMATIC CARTOON COLORIZATION

Common issues

Fig. 1. «Color bleeding»

Proposed solution

Fig. 3. Most of the time, cartoons consist of large textureless regions

Find segmentation mask using watershed and edge detection

Fig.4. Segmentation mask, where each segment is roughly the same color

Introduce new loss function based on segmentation mask into the baseline algorithm.

Fig. 5. Baseline algorithm structure

V.F. Konovalov

Rank + Bil + Segment, main network, 1000 epochs Rank + Bil + Segment, main network, 500 epochs Rank + Segment, main network, 500 epochs Rank + Bil + Temporal, main + ref network, 500 epoch Rank + Bil + Temporal, main network, 500 epochs

Qualitative results

Rank + Bil + Segment, main network, 1000 epochs

Proposed losses description

$$L_{inter} = \sum_{(l,m) \in N_{Y}t} M\left[\left| f_{l}(X^{t}; \theta_{f}) - f_{m}(X^{t}; \theta_{f}) \right| \right]$$

Where M is the operation of taking the mean, I and m are pixels belonging to the corresponding segments on the KNN graph N, X is the source image.

$$L_{intra} = \sum_{l=1}^{n} M \left[\left| f_l \left(X^t; \theta_f \right) - C_l^t \right| \right]$$

Where M is the operation of taking the mean, I are all the pixels belonging to the segment, C is the ground truth frame.

Quantitative results

TABLE I.	QUANTITATIVE	RESULTS FOR	TOM&JERRY	COLORIZATION

	Metrics				
Loss function combination, networks	PSNR	LPIPS	MSE Lab	СС	
Grayscale	20.54358	0.2544	0.0039	0.3095	
Bilateral + <u>RankDiv</u> + Temporal,	20.915756	0.2079	0.0035	0.3114	
Bilateral + <u>RankDiv</u> + Temporal, main + refinement network	20.02433	0.2342	0.0036	0.3101	
RankDiv + Segment, main network	20.893824	0.2160	0.0038	0.2997	
RankDiv + Bilateral + Segment, main network	21.040308	0.2078	0.0036	0.3148	
RankDiv + Bilateral, main network	20.819466	0.2114	0.0038	0.3091	

For more results, and information about baseline losses and algorithms, see paper.

SAMARA UNIVERSITY