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Abstract— In this work, studies were carried out in the field of singular beams, in the case of the passage of light 
beams through gyroanisotropic media. It has been experimentally shown that when Gaussian light beams pass 
through a system of two gyroanisotropic crystals with opposite values of the gyration coefficient, singular beams with 
a helical intensity distribution are formed. Using computer simulation of the process of light propagation through two 
gyroanisotropic crystals, it is shown that such a system is capable of generating optical vortices with a double 
topological charge in one of the components of circular polarization. 
Keywords— singular optics, topological charge, gyro anisotropic crystal. 
 

I. Introduction	
Recently, a large cycle of experimental studies [1, 2] on solving optical problems for the paraxial wave equation [3] in the 
analysis of various types of singular beams has been published in leading scientific journals, which in due time open up new 
theoretical prospects for further scientific research. Particular attention is paid to methods for creating and analyzing phase 
masks [4–12] for structurally stable singular beams with a helical intensity distribution. But as you know, artificially created 
phase masks must be made with high precision and are associated with high production costs. 
On the other hand, anisotropic crystals are of great interest for creating various types of optical singular beams. Both uniaxial 
and biaxial crystals can serve as the main elements for generating various types of optical singular beams [13]. One of the 
surprising features of optical crystals is their ability to generate polychromatic vortices in one of the components with a high 
degree of efficiency. Modern studies show that optical crystals, in contrast to computer-synthesized holograms [14–16], can 
generate polychromatic structurally stable singular beams with a helical intensity distribution.  
The purpose of this article is to consider another method that allows one to generate singular beams carrying screw edge 
dislocations and optical vortices using two gyroanisotropic crystals. 
 

II. Simple gyrotropic crystals 
Let us ask ourselves how it is possible to obtain a structurally stable singular beam with a helical intensity distribution from a 
beam that has passed through an anisotropic medium.  
As experimental data have shown, it is necessary to pass a beam of linearly polarized light through a gyroanisotropic 
medium. Figure 1 shows such beams or so-called. Airy spirals. These studies are used in crystallography to determine the 

right and left-handed anisotropic optical crystals. 
Under the condition that the beam waist   at the input face of the crystal is 

equal   , almost perfect matching of the beams is observed in the 

entire cross-sectional region, when the waist is approximately equal to the 
wavelength. Moreover, such matching is typical for Laguerre-Gauss beams. 
In this case, the contribution of the energy flux with ring dislocations is 
negligibly small, and the field forms a helical beam. It should also be noted 
that this gives us the 
technical ability to 
generate polychromatic 
helical beams. To do 
this, you just need to 

focus polychromatic light into a crystal. 
As an example of the generation of polychromatic structurally stable 
singular beams with a helical intensity distribution, we present the 
intensity distribution patterns shown in Figure 2. We regard a light source 
to be similar to an absolutely black body while the beam to have the only 
beam radius for all wavelengths. This means that our rays are spatially 
coherent. 

III. Double gyrotropic crystal 
As we showed earlier, one gyroanisotropic crystal makes it possible to 
generate polychromatic structurally stable singular beams with a helical 
intensity distribution in the same way as two consecutively located 
gyroanisotropic crystals, but with different gyration values.  
The rest of the crystal parameters remain the same. For this case, it is 
necessary to multiply two matrices for each crystal with the difference

1 2     . Where 2 2
Ck n r d    - full rotation (gyration) of the electric vector, r  - radius of the first ring 

dislocation, d - crystal length. After applying linear algebra, we have 
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Since the eigenmodes included in the linearly polarized beam propagate with different phase velocities, the field amplitude 

will oscillate along the crystal with a period  22 2 / 2    ,  - propagation constant of a non-diffracting beam. 
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  is a phase difference between ordinary  oE  and extraordinary  eE  ray components at the total 

crystal length d, e o
Ln n n    is a linear birefringence, on  and en  stand for ordinary and extraordinary refractive indices, 

k is a wavenumber. The eigenvalues   of matrix (1) have the form 
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Thus, the eigenvectors can be represented as: 
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Let's plot the polarization distribution (Figure 3) for the pseudo-TE and pseudo-TM modes 
(5): 
As we can see, the intensity 
distribution near the optical axis 
during the passage of two 
gyroanisotropic crystals is 
similar to the classical TE and 
TM modes that are formed in an 
anisotropic crystal. But at the 
periphery of the optical beam, 
we can observe significant 
differences, which we will call 
pseudo-TE and pseudo-TM 
modes. 
Figure 4 shows examples of the intensity distribution of a beam passing through two 
gyroanisotropic crystals for various components. As we can see, the xЕ component (Figure 

4(a)) has no features other than zero intensity on the beam axis. At the same time, a new 
phase feature is being formed in the yЕ component (Figure 4(b)) - this is the so-called 

double screw edge dislocation. Consider the condition for the phase singularity, 
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The first expression describes the double helix, while the second describes the distribution at 
the periphery. This complex spiral is shown in Figure 5. 
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After passing through a quarter-wave plate, the field will take the form: 
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The polarizer cuts out the yЕ  - component from the vortex field. Intensity distribution 

shown in Figure 6. 
In fact, we have obtained an ordinary vortex with a double charge, similar to those that 
can be obtained on a simple anisotropic crystal [17,18]. We know that the vortices 
obtained in anisotropic crystals are surrounded by numerous ring dislocations, while in 
our case these dislocations are almost not observed. The degree of splitting of 
dislocations depends on the coefficient / . The greater the gyration of the crystal, the 
less the dislocations are noticeable, but at the same time the coefficient 

22 /x yE dS E dS   decreases, so that in the final analysis the dislocations can disappear 

under the condition C Ln n    that the circular birefringence is much greater than the 

linear one. 
IV. Experiment 

 More and more scientific publications appear in which the authors use not 
monochromatic, but polychromatic singular beams, this is obvious. The transmission 
capacity of any communication channel directly depends on the degrees of freedom, and 
it is the wavelength that becomes an additional degree of freedom. In this regard, we have 
concentrated on the study of polychromatic singular beams transmitted for a 
gyroanisotropic crystal. 
 Consider an experimental setup (Figure 7) for studying polychromatic singular 
beams transmitted for a gyroanisotropic crystal. One of the main conditions for the 
generation of polychromatic singular beams is the radiation source. We opted for a 
halogen lamp with a spherical mirror and an angular beam divergence of less than 4 

degrees. Subsequently, such a beam becomes linearly polarized due to the passage of a 
polarizer.  
 

Subsequently, 
such a linearly 
polarized beam is 
focused by a system of 
lenses for the passage 
of two successively 
located anisotropic 
crystals - a LiNbO3 
crystal and a SiO2 crystal. It should be immediately 
noted that the optical axes of these two crystals are 
codirectional. The resulting beam passes through the 
polarizer and then hits the CCD camera array. 

As our studies have shown, the intensity 
distribution of the resulting singular beam directly 

depends on the polarizer rotation angle (Figure 8) and at an angle of 090  polarizer axes, 
an intensity carina arises corresponding to a purely helical dislocation. 

It should be noted a special property of polychromatic beams that have passed through two 
successively located anisotropic crystals - the dislocations of the wave front are not smeared, 
and clear spiral lines are visible, which form four branches. The method of generation of 
polychromatic beams during the passage of two successively located anisotropic crystals, 
described in this article, can be used by other researchers to analyze the properties of spin and 
orbital angular momentum in free space [19,20]. 
 

V. Conclusion	
 
As our studies show, polychromatic singular beams carrying screw edge dislocations and optical 
vortices can be created using gyroanisotropic crystals. 
As we have shown, two gyrotropic crystals with opposite signs of the gyration coefficients make 
it possible to create spiral edge dislocations from a beam of linearly polarized polychromatic 
light. The equations presented in this paper make it possible to analyze the propagation of 
polychromatic singular beams in various cases. 
The use of two anisotropic crystals and a halogen lamp as a source of radiation. showed that in 
one of the beam components it is possible to create a polychromatic phase feature with a clearly 
defined central helical line. 
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Fig.1 A spiral beam (a) intensity 
distribution xЕ , (b) intensity distribution 

yЕ  

 
Fig.2 Polychromatic spiral beam 
obtained at different angles relative to 
the polarizer axes. 

 
Fig.3  Pseudo modes of natural beam 
polarization in a gyrotropic crystal: (a) TE 

mode psTE and (b) TM mode psTM . 

 
Fig.4  P Beams passing 
through two gyrotropic 
crystals: components (a) - 

xЕ  components, (b) - 

yЕ  components, (c) - 

phase. 

 
Fig.5  Intensity distribution in 
the E(-) left circularly 
polarized component and 
phase distribution for the left 
circularly and right circularly 
polarized components. 

 
Fig.6  Image of a double 

charged vortex 

 
Fig.7 Scheme of the experimental setup: 1 - halogen lamp, 2 - 
spatial lens filter, 3,9 - polarizers, 4,6,8 - lenses, 5 - LiNbO3 
crystal, 7 - SiO2 crystal, 10 - CCD camera, - Ĉ  unit vector 

of optical axes 

 
Fig.8   Experimentally 
obtained spiral beams 
under different 
directions of polarizer 
axes . 
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