Methods

We consider an insurance company that has \(n \) insured objects. The probability density of the occurrence of an insured event

\[
p = e^{-\xi}
\]
depends on the preventive measures carried out by the insurant for the amount of \(f \). The effectiveness of these measures \(\xi \) is determined by the results of statistics on the object of insurance for several time periods for a number of parameters. The expected damage

\[
X = pX
\]
depends on the probability \(p \) and on the amount of damage \(X \). The insurance premium \(V \) depends on the share of the insured risk \(\gamma^S \)

\[
V = X^S \gamma^S
\]
and the insurance rate \(T \):

\[
V = X^S \gamma^S, T
\]

where \(X^S \) is the insured damage. This parameter differs from the entire damage, because the insurant can transfer part of the damage \(\gamma^S \) to insurance in order to reduce the insurance premium.

The amount of insurance compensation \(W \) depends on the damage \(X^S \) on the level of the insurer’s liability \(\alpha \) (0 < \(\alpha \) ≤ 1):

\[
W = X^S \alpha.
\]

The compensation \(W \) depends on the possible damage \(X \) and on the insurer’s methods of calculating the damage, which are expressed in the parameter \(\alpha \).

The insurant’s profit function is

\[
\Pi = \sum_{i=1}^{n} (V_i - p_i W_i) = \sum_{i=1}^{n} e^{-\xi_i f_i(T_i)} \chi_i \left(\chi_i^S T_i - \alpha_i \right)
\]

(1)

The problem of searching for the optimal vector of rates \(T^* = (T_1^*, T_2^*, ..., T_n^*) \), is based on the maximization of the insurer’s profit

\[
\{T_i^*\} = \arg \max_{0<T_i<1} \Pi \quad \text{subject to} \quad \begin{cases} \frac{df_i}{dT_i} < 0, \\ 0 < \xi_i < 1, \\ \alpha_i \leq \chi_i^S, \\ \sum_{i=1}^{n} (\chi_i^S T_i - \alpha_i) > 0. \end{cases} \quad (2)
\]

We consider various types of the function \(f_i(T_i) \) that satisfy the condition \(\frac{df_i}{dT_i} < 0 \).

These are the functions of the following form

\[
f_i(T_i) = -k_i T_i + b_i, \quad (3)
\]

\[
f_i(T_i) = e^{-k_i T_i} + b_i, \quad (4)
\]

\[
f_i(T_i) = \frac{k_i}{T_i} + b_i, \quad (5)
\]

where \(k_i \) and \(b_i \) are the parameters of the function \(f_i(T_i) \), they depend on the terms of the insurance contract and on the system of discounts for rates in the frame of the preventive measures.

Results

Proposition: The vector \(T^* \) is the solution of problem (1)-(2), and it has the following coordinates:

for \(f_i(T_i) \) of type (4) \(T_i^* \) is solution of equation

\[
T_i^* + \frac{e^{-k_i T_i^*}}{\xi_i k_i} - \frac{\alpha_i}{\gamma_i^S} = 0, \quad (6)
\]

if \(k_i e^{-k_i T_i^*} (\xi_i - 1)(\gamma_i^S T_i^* - \alpha_i) + 2 \gamma_i^S T_i^* < 0, \)

for \(f_i(T_i) \) of type (5)

\[
T_i^* = \frac{\xi_i k_i}{2} \left(1 + \frac{4 \alpha_i}{\xi_i \gamma_i^S k_i} - 1 \right), \quad (7)
\]

if \(\frac{\xi_i \gamma_i^S k_i + 2 \alpha_i}{2} \left(1 + \frac{4 \alpha_i}{\xi_i \gamma_i^S k_i} - 1 \right) - \alpha_i < 0. \)

FUNCTIONS \(X, T^* \) AND PARAMETERS FOR METALLURGICAL AND ELECTRICAL ENTERPRISES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metallurgical enterprise</th>
<th>Electrical enterprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi)</td>
<td>5.96 \times 10^{-6}</td>
<td>1.1 \times 10^{-3}</td>
</tr>
<tr>
<td>(X)</td>
<td>555.58 million rubles</td>
<td>39.94 million rubles</td>
</tr>
<tr>
<td>(X)</td>
<td>555.58e^{-5.96 \times 10^{-6} f}</td>
<td>39.94e^{-1.1 \times 10^{-5} f}</td>
</tr>
</tbody>
</table>

\[
T^*_M = 39.10^{-5} \left(1 + 5065.2 \frac{\alpha M}{\gamma M} - 1 \right)
\]

\[
T^*_E = 2.9 \times 10^{-5} \left(1 + 68610.6 \frac{\alpha E}{\gamma E} - 1 \right)
\]

Fig. 1. \(T^*_M \) for metallurgical enterprise

Fig. 2. \(T^* \) for metallurgical and electrical enterprises for \(\alpha = 0.1 \)