Development of a Light Source Layout for a New Method for Multispectral Image Processing of Skin Neoplasms

Sviatkina V.I., Kordyukova A.A., Belyaev A.V.

Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russian Federation
Institute of Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, Russian Federation

Annotation
The necessity of developing a special light source for a new method of multispectral image processing of skin neoplasms is substantiated. An optical scheme of the developed light source is given, as well as a block diagram for its implementation. The selection of the main components, as well as checking their performance.

Introduction
1. Currently existing methods for diagnosing malignant neoplasms have a number of disadvantages and cannot meet all the requirements for their determination, and according to the compiled general structure of oncological morbidity in the Russian Federation, skin cancer is the leading one (10.9%).
2. An urgent problem to solve is the loss of part of the information due to the limited wavelength range on which the measurements are made.
3. One of the ways to eliminate this problem is the development of a new method for digital multispectral image processing of skin neoplasms.
4. This is ensured, through the use of a special light source that allows you to control the wavelengths necessary for the study of ZNK.

Methods and materials
1. The main task is the formation of a light beam with a program-controlled spectrum. The signal coming from the computer switches the spectral intervals of illumination of the object under study. Through the expander, this beam illuminates it, and the required image is captured by the camera. The resulting sequence of monochrome images is processed on a computer.
2. The light source layout consists of 16 LEDs located along the radius from the center of the diffraction grating. At a focal distance from them, there are lens segments that form beams of collimated light. After diffraction, the light flux from all LEDs propagates in the direction of 95 degrees to the plane of the diffraction grating and hits the lens that forms a converging light beam. Switching the wavelength is carried out by applying current to the selected LED.

Calculations
These are the power calculations, confirming the performance of the product compared to the experimental results.

\[P = 4 \times \pi \times P_{em} \times \sin^2(\varphi/2) \] (1),
where \(\varphi \) is a diffraction angle, calculated as:

\[d(\sin \varphi \cdot \sin \varphi') = k \lambda \] (2)

Measured power values:
To lens segment: \(P = 5.2 \text{ mW} \)
After lens segment: \(P = 0.038 \text{ mW} \)
After grating: \(P = 0.016 \text{ mW} \)

Table 1. Values of diffraction angles

<table>
<thead>
<tr>
<th>(\lambda), nm</th>
<th>(\varphi), °</th>
<th>(\lambda), nm</th>
<th>(\varphi), °</th>
</tr>
</thead>
<tbody>
<tr>
<td>727</td>
<td>31.0813</td>
<td>941</td>
<td>43.9376</td>
</tr>
<tr>
<td>780</td>
<td>34.0727</td>
<td>990</td>
<td>47.2687</td>
</tr>
<tr>
<td>834</td>
<td>37.2335</td>
<td>1047</td>
<td>51.4307</td>
</tr>
<tr>
<td>887</td>
<td>40.4703</td>
<td>1100</td>
<td>55.6742</td>
</tr>
</tbody>
</table>

Conclusion
Thus, a special light source with a program-controlled spectrum in the wavelength range of 700-1100 nm has been developed. The functioning of the developed layout was tested, confirming its operability. The work contributes to the development of the method of multispectral image processing of skin neoplasms, and the obtained structure of the light source model is the first stage in the design of an experimental sample of a device that implements multispectral diagnostics of LNV.

References

Contacts
Vitalia Sviatkina
sviatkina.vi@edu.spbstu.ru
+7(931)2560458
St.Petersburg Polytechnical University
https://www.spbstu.ru/